Новые подходы к оценке церебральной гемодинамики при цереброваскулярных заболеваниях ишемического генеза с помощью МРТ


М.Дж Донахью, М.К. Шротер, Дж. Хендрикс

Абстракт. В основе широкого спектра цереброваскулярных расстройств лежат изменения церебральной гемодинамики. Возможность точного и количественного измерения гемодинамических (CBF и CBV) и соответствующих метаболических (CMRO2) параметров имеет важное значение для понимания функционирования здорового мозга и относительной дисфункции при ишемии. Несмотря на широкое распространение позитронно-эмиссионной томографии, однофотонной эмиссионной томографии и МРТ с контрастным усилением препаратами гадолиния, совсем недавно начали использовать МРТ подходы, не требующие экзогенного введения контрастного вещества, с различной чувствительностью к изменению гемодинамических показателей. Возможность получения данных о показателях гемодинамики особенно важна в клинических и научных условиях, требующих наблюдения и проведения продольных исследований. Цель настоящего обзора заключалась в описании современных достижений в методиках МРТ для оценки церебрального кровотока (CBF), объема церебральной крови (CBV), уровня экстракции кислорода (CMRO2), и предоставлении практических рекомендаций во избежание ошибок при визуализации. МР-исследования цереброваскулярных заболеваний, выполненные без введения контрастного препарата, кратко рассмотрели в контексте клинической значимости, методологической силы и ограничений.
Читать статью в
"Библиотеке Врача"

Литература


1. Derdeyn C.P., Videen T.O., Yundt K.D., Fritsch S.M., Carpenter D.A., Grubb R.L., et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125:595– 607.
2. Zipfel G.J., Sagar J., Miller J.P., Videen T.O., Grubb R.L. Jr, Dacey R.G. Jr, et al. Cerebral hemodynamics as a predictor of stroke in adult patients with Moyamoya disease: a prospective observational study. Neurosurg Focus. 2009;26:E6.
3. Grubb R.L. Jr, Derdeyn C.P., Fritsch S.M., Carpenter D.A., Yundt K.D., Videen T.O., et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280: 1055–1060.
4. Gonzalez R.G., Schaefer P.W., Buonanno F.S., Schwamm L.H., Budzik R.F., Rordorf G., et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–162.
5. Wintermark M., Albers G.W., Alexandrov A.V., Alger J.R., Bammer R., Baron J.C., et al. Acute stroke imaging research roadmap. Stroke. 2008;39:1621–1628.
6. Muir K.W., Buchan A., von Kummer R., Rother J., Baron J.C. Imaging of acute stroke. Lancet Neurol. 2006;5:755–768.
7. Hacke W., Albers G., Al-Rawi Y., Bogousslavsky J., Davalos A., Eliasziw M., et al. The desmoteplase in acute ischemic stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36:66 –73.
8. Hacke W., Furlan A.J., Al-Rawi Y., Davalos A., Fiebach J.B., Gruber F., et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion ct (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8:141–150.
9. Furlan A.J., Eyding D., Albers G.W., Al-Rawi Y., Lees K.R., Rowley H.A., et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37:1227–1231.
10. Albers G.W., Thijs V.N., Wechsler L., Kemp S., Schlaug G., Skalabrin E., et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508–517.
11. Lansberg M.G., Lee J., Christensen S., Straka M., De Silva D.A., Mlynash M., et al. Rapid automated patient selection for reperfusion therapy: a pooled analysis of the echoplanar imaging thrombolytic evaluation trial (EPITHET) and the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Stroke. 2011;42:1608–1614.
12. Galinovic I., Ostwaldt A.C., Soemmer C., Bros H., Hotter B., Brunecker P., et al. Search for a map and threshold in perfusion MRI to accurately predict tissue fate: a protocol for assessing lesion growth in patients with persistent vessel occlusion. Cerebrovascular diseases. 2011;32:186–193.
13. Jalandhara N., Arora R., Batuman V. Nephrogenic systemic fibrosis and gadolinium-containing radiological contrast agents: an update. Clin Pharmacol Ther. 2011;89:920 –923.
14. Williams D.S., Detre J.A., Leigh J.S., Koretsky A.P. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89:212–216.
15. Buxton R.B., Frank L.R., Wong E.C., Siewert B., Warach S., Edelman R.R. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40:383–396.
16. Raichle M.E. Measurement of local cerebral blood flow and metabolism in man with positron emission tomography. Fed Proc. 1981;40:2331–2334.
17. Rooney W.D., Johnson G., Li X., Cohen E.R., Kim S.G., Ugurbil K., et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. 2007;57:308 –318.
18. Donahue M.J., Blicher J.U., Ostergaard L., Feinberg D.A., MacIntosh B.J., Miller K.L., et al. Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab. 2009;29:1856 –1866.
19. Noguchi T., Kawashima M., Irie H., Ootsuka T., Nishihara M., Matsushima T., et al. Arterial spin-labeling MR imaging in Moyamoya disease compared with SPECT imaging. Eur J Radiol. 2011;80:e557–e562.
20. Liu P., Aslan S., Li X., Buhner D.M., Spence J.S., Briggs R.W., et al. Perfusion deficit to cholinergic challenge in veterans with Gulf War illness. Neurotoxicology. 2011;32:242–246.
21. Uh J., Lin A.L., Lee K., Liu P., Fox P., Lu H. Validation of VASO cerebral blood volume measurement with positron emission tomography. Magn Reson Med. 2011;65:744 –749.
22. Donahue M.J., Sideso E., MacIntosh B.J., Kennedy J., Handa A., Jezzard P. Absolute arterial cerebral blood volume quantification using inflow vascular-space-occupancy with dynamic subtraction magnetic resonance imaging. J Cereb Blood Flow Metab. 2010;30:1329 –1342.
23. Wissmeyer M., Altrichter S., Pereira V.M., Viallon M., Federspiel A., Seeck M., et al. Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol. 2010;37:127–130.
24. Xu G., Rowley H.A., Wu G., Alsop D.C., Shankaranarayanan A., Dowling M., et al. Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water pet in elderly subjects at risk for Alzheimer’s disease. NMR Biomed. 2010;23:286–293.
25. Qiu M., Paul Maguire R., Arora J., Planeta-Wilson B., Weinzimmer D., Wang J., et al. Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects. Magn Reson Med. 2010;63:374 –384.
26. Bokkers R.P., Bremmer J.P., van Berckel B.N., Lammertsma A.A., Hendrikse J., Pluim J.P., et al. Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab. 2010;30:222–229.
27. Knutsson L., van Westen D., Petersen E.T., Bloch K.M., Holtas S., Stahlberg F., et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and modelfree arterial spin labeling. Magn Reson Imaging. 2009;28:1–7.
28. Ludemann L., Warmuth C., Plotkin M., Forschler A., Gutberlet M., Wust P., et al. Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol. 2009;70:465– 474.
29. Chen J.J., Wieckowska M., Meyer E., Pike G.B. Cerebral blood flow measurement using fMRI and PET: a cross-validation study. Int J Biomed Imaging. 2008;2008:516359.
30. Newberg A.B., Wang J., Rao H., Swanson R.L., Wintering N., Karp J.S., et al. Concurrent CBF and CMRGLC changes during human brain activation by combined fMRI-pet scanning. Neuroimage. 2005;28:500–506.
31. Kimura H., Kado H., Koshimoto Y., Tsuchida T., Yonekura Y., Itoh H. Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging. 2005;22:189 –198.
32. Wintermark M., Sesay M., Barbier E., Borbely K., Dillon W.P., Eastwood J.D., et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294 –314.
33. Weber M.A., Gunther M., Lichy M.P., Delorme S., Bongers A., Thilmann C., et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol. 2003;38:712–718.
34. Liu H.L., Kochunov P., Hou J., Pu Y., Mahankali S., Feng C.M., et al. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using fair-haste: comparison with H(2)(15)O PET measurements. Magn Reson Med. 2001;45:431– 435.
35. Ye F.Q., Berman K.F., Ellmore T., Esposito G., van Horn J.D., Yang Y., et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med. 2000;44:450–456.
36. Golay X., Hendrikse J., Lim T.C. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging. 2004;15:10 –27.
37. Kim S.G. Quantification of relative cerebral blood flow change by flowsensitive alternating inversion recovery (fair) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.
38. Golay X., Stuber M., Pruessmann K.P., Meier D., Boesiger P. Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging. 1999;9:454 –461.
39. Wong E.C., Buxton R.B., Frank L.R. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med. 1998;40:348 –355.
40. Alsop D.C., Detre J.A. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998;208:410 –416.
41. Wu W.C., Fernandez-Seara M., Detre J.A., Wehrli F.W., Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med. 2007;58:1020–1027.
42. Alsop D.C., Connick T.J., Mizsei G. A spiral volume coil for improved RF field homogeneity at high static magnetic field strength. Magn Reson Med. 1998;40:49 –54.
43. Gonzalez-At J.B., Alsop D.C., Detre J.A. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med. 2000;43:739 –746.
44. MacIntosh B.J., Filippini N., Chappell M.A., Woolrich M.W., Mackay C.E., Jezzard P. Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI. Magn Reson Med. 2010;63:641– 647.
45. Petersen E.T., Mouridsen K., Golay X. The quasar reproducibility study, part II: results from a multi-center arterial spin labeling testretest study. Neuroimage. 2010;49:104 –113.
46. MacIntosh B.J., Lindsay A.C., Kylintireas I., Kuker W., Gunther M., Robson M.D., et al. Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. Am J Neuroradiol. 2010;31:1892–1894.
47. Bokkers R.P., van der Worp H.B., Mali W.P., Hendrikse J. Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis. Neurology. 2009;73:869–875.
48. Uchihashi Y., Hosoda K., Zimine I., Fujita A., Fujii M., Sugimura K., et al. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with singlephoton emission CT. Am J Neuroradiol. 2011 [Epub ahead of print].
49. van Osch M.J., Teeuwisse W.M., van Walderveen M.A., Hendrikse J., Kies D.A., van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med. 2009;62:165–173.
50. Wong E.C., Cronin M., Wu W.C., Inglis B., Frank L.R., Liu T.T. Velocityselective arterial spin labeling. Magn Reson Med. 2006;55:1334 –1341.
51. Hendrikse J., van der Grond J., Lu H., van Zijl P.C., Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke. 2004;35:882– 887.
52. Wong E.C. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med. 2007;58:1086 –1091.
53. Bokkers R.P., van Osch M.J., Klijn C.J., Kappelle L.J., Hendrikse J. Cerebrovascular reactivity within perfusion territories in patients with an internal carotid artery occlusion. J Neurol Neurosurg Psychiatry. 2011 [Epub ahead of print].
54. Garcia D.M., Duhamel G., Alsop D.C. Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med. 2005;54:366 –372.
55. Ye F.Q., Frank J.A., Weinberger D.R., McLaughlin A.C. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med. 2000;44:92–100.
56. Gunther M., Oshio K., Feinberg D.A. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med. 2005;54:491– 498.
57. Fernandez-Seara M.A., Wang Z., Wang J., Rao H.Y., Guenther M., Feinberg D.A., et al. Continuous arterial spin labeling perfusion measurements using single shot 3D Grase at 3 T. Magn Reson Med. 2005;54:1241–1247.
58. Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., et al. Distinct patterns of brain activity in young carriers of the apoE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009;106:7209–7214.
59. MacIntosh B.J., Pattinson K.T., Gallichan D., Ahmad I., Miller K.L., Feinberg D.A., et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D Grase MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab. 2008;28:1514 –1522.
60. Chen J., Licht D.J., Smith S.E., Agner S.C., Mason S., Wang S., et al. Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging. 2009;29:282–290.
61. Hendrikse J., Petersen E.T., Cheze A., Chng S.M., Venketasubramanian N., Golay X. Relation between cerebral perfusion territories and location of cerebral infarcts. Stroke. 2009;40:1617–1622.
62. Zhao P., Alsop D.C., Abduljalil A., Selim M., Lipsitz L., Novak P., et al. Vasoreactivity and peri-infarct hyperintensities in stroke. Neurology. 2009;72:643– 649.
63. Pollock J.M., Whitlow C.T., Deibler A.R., Tan H., Burdette J.H., Kraft R.A., et al. Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. Am J Neuroradiol. 2008;29:1302–1307.
64. Wolf R.L., Alsop D.C., McGarvey M.L., Maldjian J.A., Wang J., Detre J.A. Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging. 2003;13:17–27.
65. Chalela J.A., Alsop D.C., Gonzalez-Atavales J.B., Maldjian J.A., Kasner S.E., Detre J.A. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31:680 – 687.
66. Detre J.A., Alsop D.C., Vives L.R., Maccotta L., Teener J.W., Raps E.C. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology. 1998;50:633– 641.
67. Bokkers R.P., Wessels F.J., van der Worp H.B., Zwanenburg J.J., Mali W.P., Hendrikse J. Vasodilatory capacity of the cerebral vasculature in patients with carotid artery stenosis. Am J Neuroradiol. 2011;32:1030–1033.
68. Hartkamp N.S., Bokkers R.P., van der Worp H.B., van Osch M.J, Kappelle L.J., Hendrikse J. Distribution of cerebral blood flow in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery stenosis. Eur Radiol. 2011;21:875– 881.
69. Bokkers R.P., van Osch M.J., van der Worp H.B., de Borst G.J., Mali W.P., Hendrikse J. Symptomatic carotid artery stenosis: impairment of cerebral autoregulation measured at the brain tissue level with arterial spin-labeling MR imaging. Radiology. 2010;256:201–208.
70. Donahue M.J., van Laar P.J., van Zijl P.C., Stevens R.D., Hendrikse J. Vascular space occupancy (VASO) cerebral blood volume-weighted MRI identifies hemodynamic impairment in patients with carotid artery disease. J Magn Reson Imaging. 2009;29:718 –724.
71. van Laar P.J., van Raamt A.F., van der Grond J., Mali W.P., van der Graaf Y., Hendrikse J. Increasing levels of TNFalpha are associated with increased brain perfusion. Atherosclerosis. 2008;196:449–454.
72. Chang S.M., Petersen E.T., Zimine I., Sitoh Y.Y., Lim C.C., Golay X. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke. 2008;39:3248–3254.
73. Haller S., Bonati L.H., Rick J., Klarhofer M., Speck O., Lyrer P.A., et al. Reduced cerebrovascular reserve at Co2 bold MR imaging is associated with increased risk of periinterventional ischemic lesions during carotid endarterectomy or stent placement: preliminary results. Radiology. 2008;249:251–258.
74. Mandell D.M., Han J.S., Poublanc J., Crawley A.P., Stainsby J.A., Fisher J.A., et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke. 2008;39:2021–2028.
75. Van Laar P.J., Hendrikse J., Mali W.P., Moll F.L., van der Worp H.B., van Osch M.J., et al. Altered flow territories after carotid stenting and carotid endarterectomy. J Vasc Surg. 2007;45:1155–1161.
76. van Laar P.J., Hendrikse J., Klijn C.J., Kappelle L.J., van Osch M.J., van der Grond J. Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries. Radiology. 2007;242:526 –534.
77. Hendrikse J., van der Zwan A., Ramos L.M., van Osch M.J., Golay X., Tulleken C.A., et al. Altered flow territories after extracranial intracranial bypass surgery. Neurosurgery. 2005;57:486–494.
78. Ziyeh S., Rick J., Reinhard M., Hetzel A., Mader I., Speck O. Blood oxygen level-dependent MRI of cerebral Co2 reactivity in severe carotid stenosis and occlusion. Stroke. 2005;36:751–756.
79. Hendrikse J., van Osch M.J., Rutgers D.R., Bakker C.J., Kappelle L.J., Golay X., et al. Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology. 2004;233:899 –904.
80. Ances B.M., McGarvey M.L., Abrahams J.M., Maldjian J.A., Alsop D.C., Zager E.L., et al. Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. J Neuroimaging. 2004;14:133–138.
81. Detre J.A., Samuels O.B., Alsop D.C., Gonzalez-At J.B., Kasner S.E., Raps E.C. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging. 1999;10:870–875.
82. Hajjar I., Zhao P., Alsop D., Novak V. Hypertension and cerebral vasoreactivity: a continuous arterial spin labeling magnetic resonance imaging study. Hypertension. 2010;56:859–864.
83. Fierstra J., Poublanc J., Han J.S., Silver F., Tymianski M., Crawley A.P., et al. Steal physiology is spatially associated with cortical thinning. J Neurol Neurosurg Psychiatry. 2010;81:290 –293.
84. Hajjar I., Zhao P., Alsop D., Abduljalil A., Selim M., Novak P., et al. Association of blood pressure elevation and nocturnal dipping with brain atrophy, perfusion and functional measures in stroke and nonstroke individuals. Am J Hypertens. 2010;23:17–23.
85. Pollock J.M., Deibler A.R., Whitlow C.T., Tan H., Kraft R.A., Burdette J.H., et al. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. Am J Neuroradiol. 2009;30:378–385.
86. Zaharchuk G., Bammer R., Straka M., Shankaranarayan A., Alsop D.C., Fischbein N.J., et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology. 2009;252:797–807.
87. Wu B., Wang X., Guo J., Xie S., Wong E.C., Zhang J., et al. Collateral circulation imaging: MR perfusion territory arterial spin-labeling at 3T. Am J Neuroradiol. 2008;29:1855–1860.
88. van Laar P.J., van der Graaf Y., Mali W.P., van der Grond J., Hendrikse J. Effect of cerebrovascular risk factors on regional cerebral blood flow.Radiology. 2008;246:198 –204.
89. Mandell D.M., Han J.S., Poublanc J., Crawley A.P., Fierstra J., Tymianski M., et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. Am J Neuroradiol. 2011;32:721–727.
90. Zaharchuk G., Do H.M., Marks M.P., Rosenberg J., Moseley M.E., Steinberg GK. Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with Moyamoya disease. Stroke. 2011 [Epub ahead of print].
91. Heyn C., Poublanc J., Crawley A., Mandell D., Han J.S., Tymianski M., et al. Quantification of cerebrovascular reactivity by blood oxygen leveldependent MR imaging and correlation with conventional angiography in patients with Moyamoya disease. Am J Neuroradiol. 2010;31:862–867.
92. O’Gorman R.L., Siddiqui A., Alsop D.C., Jarosz J.M. Perfusion MRI demonstrates crossed-cerebellar diaschisis in sickle cell disease. Pediatr Neurol. 2010;42:437–440.
93. Helton K.J., Paydar A., Glass J., Weirich E.M., Hankins J., Li C.S., et al. Arterial spin-labeled perfusion combined with segmentation techniques to evaluate cerebral blood flow in white and gray matter of children with sickle cell anemia. Pediatr Blood Cancer. 2009;52:85–91.
94. van den Tweel X.W., Nederveen A.J., Majoie C.B., van der Lee J.H., Wagener-Schimmel L., van Walderveen M.A., et al. Cerebral blood flow measurement in children with sickle cell disease using continuous arterial spin labeling at 3.0-Tesla MRI. Stroke. 2009;40:795–800.
95. Oguz K.K., Golay X., Pizzini F.B., Freer C.A., Winrow N., Ichord R., et al. Sickle cell disease: continuous arterial spin-labeling perfusion MR imaging in children. Radiology. 2003;227:567–574.
96. Villringer A., Rosen B.R., Belliveau J.W., Ackerman J.L., Lauffer R.B., Buxton R.B., et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 1988;6:164–174.
97. Powers W.J., Raichle M.E. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke. 1985;16:361–376.
98. Steiger H.J., Aaslid R., Stooss R. Dynamic computed tomographic imaging of regional cerebral blood flow and blood volume: a clinical pilot study. Stroke. 1993;24:591–597.
99. Sakai F., Nakazawa K., Tazaki Y., Ishii K., Hino H., Igarashi H., et al. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab. 1985;5:207–213.
100. Petersen E.T., Lim T., Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med. 2006;55:219–232.
101. Kim T., Kim S.G. Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals. Magn Reson Med. 2005;54:333–342.
102. Lu H., Golay X., Pekar J.J., Van Zijl P.C. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med. 2003;50:263–274.
103. Gu H., Lu H., Ye F.Q., Stein E.A., Yang Y. Noninvasive quantification of cerebral blood volume in humans during functional activation. Neuroimage. 2006;30:377–387.
104. Scouten A., Constable R.T. Vaso-based calculations of CBV change: accounting for the dynamic CSF volume. Magn Reson Med. 2008;59:308–315.
105. Donahue M.J., Lu H., Jones C.K., Edden R.A., Pekar J.J., van Zijl P.C. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med. 2006;56:1261–1273.
106. Jin T., Kim S.G. Spatial dependence of CBV-FMRI: a comparison between VASO and contrast agent based methods. Conf Proc IEEE Eng Med Biol Soc. 2006;1:25–28.
107. Donahue M.J., Hua J., Pekar J.J., van Zijl P.C. Effect of inflow of fresh blood on vascular-space-occupancy (VASO) contrast. Magn Reson Med. 2009;61:473–480.
108. Donahue M.J., Stevens R.D., de Boorder M., Pekar J.J., Hendrikse J., van Zijl P.C. Hemodynamic changes after visual stimulation and breath holding provide evidence for an uncoupling of cerebral blood flow and volume from oxygen metabolism. J Cereb Blood Flow Metab. 2009;29:176–185.
109. Wu C.W., Liu H.L., Chen J.H., Yang Y. Effects of CBV, CBF, and blood-brain barrier permeability on accuracy of PASL and VASO measurement. Magn Reson Med. 2010;63:601– 608.
110. Poser B.A., Norris D.G. Measurement of activation-related changes in cerebral blood volume: VASO with single-shot haste acquisition. Magma. 2007;20:63–67.
111. Hua J., Donahue M.J., Zhao J.M., Grgac K., Huang A.J., Zhou J., et al. Magnetization transfer enhanced vascular-space-occupancy (MT-VASO) functional MRI. Magn Reson Med. 2009;61:944–951.
112. Poser B.A., Norris D.G. Application of whole-brain CBV-weighted fMRI to a cognitive stimulation paradigm: robust activation detection in a Stroop task experiment using 3D Grase VASO. Hum Brain Mapp. 2011;32:974–981.
113. Uh J., Lewis-Amezcua K., Martin-Cook K., Cheng Y., Weiner M., Diaz-Arrastia R., et al. Cerebral blood volume in Alzheimer’s disease and correlation with tissue structural integrity. Neurobiol Aging. 2010;31:2038–2046.
114. Donahue M.J., Blakeley J.O., Zhou J., Pomper M.G., Laterra J., van Zijl P.C. Evaluation of human brain tumor heterogeneity using multiple T1-based MRI signal weighting approaches. Magn Reson Med. 2008;59:336–344.
115. Lu H., Pollack E., Young R., Babb J.S., Johnson G., Zagzag D., et al. Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. Am J Neuroradiol. 2008;29:373–378.
116. Hua J., Qin Q., Donahue M.J., Zhou J., Pekar J.J., van Zijl P.C. Inflowbased vascular-space-occupancy (IVASO) MRI. Magn Reson Med. 2011;66:40–56.
117. Leenders K.L., Perani D., Lammertsma A.A., Heather J.D., Buckingham P., Healy M.J., et al. Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain. 1990;113:27–47.
118. van Zijl P.C., Eleff S.M., Ulatowski J.A., Oja J.M., Ulug A.M., Traystman R.J., et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med. 1998;4:159 –167.
119. Stefanovic B., Pike G.B. Venous refocusing for volume estimation: Verve functional magnetic resonance imaging. Magn Reson Med. 2005;53:339–347.
120. Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–9872.
121. An H., Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20:1225–1236.
122. He X., Yablonskiy D.A. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med. 2007;57:115–126.
123. Lee J.M., Vo K.D., An H., Celik A., Lee Y., Hsu C.Y., et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol. 2003;53:227–232.
124. Lu H., Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008;60:357–363.
125. Lu H., Zhao C., Ge Y., Lewis-Amezcua K. Baseline blood oxygenation modulates response amplitude: physiologic basis for intersubject variations in functional MRI signals. Magn Reson Med. 2008;60:364–372.
126. Bolar D.S., Rosen B.R., Sorensen A.G., Adalsteinsson E. Quantitative imaging of extraction of oxygen and tissue consumption (quixotic) using venular-targeted velocity-selective spin labeling. Magn Reson Med. 2011 [E-pub ahead of print].


Похожие статьи


Бионика Медиа